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The equilibrium of linearly-elastic elongated bodies (rods) with an extremely arbitrary geometry and structure subjected to the effects 
of force and heat is considered. Owing to the presence of a small parameter--the relative thickness--this is a singularly perturbed 
problem. The asymptotic analysis involves splitting the three-dimensional problem into one- and two-dimensional problems. The 
one-dimensional problem gives the same result as the classical theory, even when the material is structurally heterogeneous and 
anisotropic, which invalidates the conventional hypotheses of applied theories. The two-dimensional problems yield not only the 
parameters of the one-dimensional model, but also a complete solution of the three-dimensional problem. The algorithm used to 
split the three-dimensional problem is implemented on a computer. It is sometimes more effective than the conventional finite-element, 
boundary-element and difference methods in the case of elongated bodies. © 1999 Elsevier Science Ltd. All rights reserved. 

This paper  is a continuation of the previous publications [1, 2]. A different formulation of the asymptotic 
analysis of  the three-dimensional problem for a rod is considered in [3-7]. 

1. S T A T E M E N T  OF T H E  P R O B L E M  A N D  H E U R I S T I C  A R G U M E N T S  

The geometry of the rods is determined primarily by the axis--a smooth spatial curve on which the radius 
vector is a function of the arc coordinate r(s). The section of the rod perpendicular to the axis is geometrically 
and physically identical for all s. The material is non-homogeneous and orthotropic, and each section lies 
in a plane of material symmetry. The body is subjected to forces f distributed arbitrarily over the volume. 

The equilibrium of a linearly elastic medium is described by the equations [8] 

V . T + f = O ,  i n c D - - - V x ( V x D )  r = 0  

D =4 A.-T = Vu s (1.1) 

fourth-rank tensor A (T and D are the stress and strain tensors and u is the displacement vector). The 4 
for the given material  will be discussed below. 

The lateral surface of  the rod is assumed to be free: N.  T = 0 (N is the normal to the lateral surface). 
This does not affect the generality of  the argument since the volume forces are arbitrary. The conditions 
at the ends s = const need special analysis. 

The order  of  smallness of  the relative thickness can be expressed by the following representat ion of 
the radius vector in the three-dimensional body 

R(xa , s )=X- l r ( s )+x ,  x = x a e  a, X ~ 0  

where x~, ea are the Cartesian coordinates in the section and the corresponding unit vectors. The 
coordinate triple ql = Xl, qZ = x2, q3 = s corresponds to the expression of the Hamiltonian operator  

V = V± +v -Jt(~ s - krL) (1.2) 

V j_ ~-ea~l~xa, t = O ~ r = r "  

v = X - I + t . k ± x x ,  L - t . x x V L  

where k = k± + ktt is the vector of curvature and torsion (el" = k x ei, Ca, - t ) .  
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The small parameter X appears in Eqs (1.1) via the V-operator so that the asymptotic analysis can 
begin. A good idea of the method is provided by the linear algebraic system C u  = f ,  C = Co + ~C1.  
The case of a regular perturbation (det Co * 0) is of little interest: u = u0 + Lul + . . . .  C0u0 = f, 
Cou~ = - C l U o  . . . . .  the principal term of the asymptotic form, is found in the first step and we then 
need to discard formally the small terms in the statement of the problem. 

Asymptotic splitting arises if the problem C0u0 has a non-trivial solution (det C = 0), when the solution 
is only partly found in the first step; further steps are required in order to find all the details of the 
principal term of the asymptotic form from the solvability conditions. This can be done as follows: 

T 
u = 2L-IUo + u~ + .... CoU o = 0 ~ ~ , ,  ( f  - C t Y.akq~t~ ) = 0 

(Vk:C~'Vk = 0, and a constructive solvability condition of the linear homogeneous problem is used). The 
initial problem splits into three--with unknowns q)k, Vk and ak, respectively. 

The principal term could contain a different power than ~.-t, such as ~0, ~-2, etc. The number of 
steps might also be different, but cannot be less than two. For the case of a rod it turned out that the 
displacement vector u = ~.-4u0 + U3u~ + . . . .  Since the volume forces f are of the order of unity, it is 
easy to see that splitting the problem in displacements requires five steps. We will therefore start with 
the formulation in stresses, for which only three are needed. 

2. S P L I T T I N G  OF THE STRESS P R O B L E M  

The stress and strain tensors can be represented in the form 

T = T± + 2St s + C~,tt, T± - T~e~el~, S = T3~ze a 

D = D_L + d t  s + E,tt, D± - D~e~el~, d --- 2D3ae a (2.1) 

The tensor T± and I)1 describe the stress-strain state in the plane of a section, S and d are the stress and 
strain vectors of the transverse shear, ot and st are the extension stress and strain. Note that it is usual in 
applications to drop the stresses "Ix as secondary. But it is not possible to do this in the case of rods with 
structural heterogeneity, as all the components of T may be of the same order. Owing to the anisotropy, 
even small components of T must be calculated if they operate on small areas which cohere only slightly. 

Substituting T from (2.1) into the equation of the balance of forces (1.1) and using (1.2), we arrive 
at the system 

V ± - ( v T ± ) + S - k t ( L S + S x  t ) - ~ , t x  k ± +vf± = 0  (2.2) 

V± .(vS)+O t - k r l _ ~  , + t . k x  x S +vft = 0  

We have introduced differentiation in a moving basis: for the scalar ot - OsOt, for the vector S = S#i = 
0sS - k x S, etc. 

The boundary condition N • T = 0 on the free lateral surface can be represented in the form 

n. (vT±)lar= k,x × n. tS, n . ( v S l ~ r = k t x x n . t f f  , (2.3) 

where n is the unit normal to the contour OF of the section in its plane. Relations (2.3) can be derived 
by specifying the equation of the lateral surface q~(x~) -- 0 and calculating N = Vq~/I VcPl with repre- 
sentation (1.2) for V. 

The statement of the problem in stresses also contains the equation of compatibility of the strains 
(1.1). From (1.2) and (2.1), we obtain 

A±~ z = V  i . V  i . D  z + .... (E l - t r D ± )  

Aid  = V±V± . d +  .... ViVxE ~ = E±A±•, + ... (E± = e~e~x) (2.4) 

in which only those terms which are important as ~. ~ 0 are included. 
For the given orthotropic material Hooke's law takes the form 

I 
D± =4 A±. .T±+AI~, ,  d= A2 "S ,  E , = A I . . T ± + - - a  , 

Et 
(2.5) 
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(4A,L, A], A2 are tensors in the plane of the section, of fourth and second rank, respectively). 
In the general case the conditions at the ends s = const require the use of the method of matched 

asymptotic expansions [9]. 
We will seek a solution of problem (2.2)-(2.5) in the form of a series in integer powers of ~. 

T = ;Lm(T (°) + kT (I) + ...) 

The values m = 0 and m = -1 lead to 
principal term T (°) we will then have 

V,L-T(j. °) =0,  

A±E~ ) = V± • 

V±-S (°) =0,  

We will start our solution of problem 

contradictions. The only other possibility is m = -2. For the 

n.  T(j. °) laF= 0 (2 .6)  

V±. D(± °), V,LV±~(, °) = 0 

n. S (°) laF = 0, Aid  (°) = V±V±. d (°) (2.7) 

(2.6) with the last equation 

e} °) = A(s) + B(s ) .  x (2 .8)  

Even in a non-homogeneous and anisotropic body the deformation ei is linearly distributed over the 
section (as ~. ---) 0). It then follows from (2.5) that 

D.L = (4A.L - E,A,A l )..1"1 + EtA l (A + B-x) (2.9) 

But this is similar to Hooke's law in the plane problem with initial strains. The equations and boundary 
conditions (2.6) totally define a solution of the form 

T(-L 0) = AT A + B. eaTBa (2.10) 

Here TA and TBa are solutions of the three problems in the plane of the section with initial strains 
D ° = EAI and Ec4~x~, respectively. These strains are incompatible in the case of a non-homogeneous 
material, and so T~_ ~ 0. 

In addition to these plane problems, we need to solve problem (2.7) for the tangential stress vector 
S (°). Putting V,L x d (°) • t = 2C, we obtain C = C(s) from the last equation of (2.7). Then from (2.7) 
and (2.5) we arrive at the following relation (the section is assumed to be simply-connected) 

The last component  of T o is 

S (°) = CV,Lg x t (12.11) 

g : V±. [-(t x A 2 x t). V±g] = -2, g laF = 0 (12.12) 

ol °) = ACA + B~(~ (B~ - B-e~) 

c~ A = Er(l-A l --TA), O~ = ET(XcL -A l "-TB~) (2.13) 

The two-dimensional problems have thus been stated completely (for TA, TB~ and g). It is now 
necessary to determine the functions of the arc coordinateA, B and C, by picking out the one-dimensional 
problem. This is found from the corresponding solvability conditions. The two-dimensional problems 

Vj..T-L +fj_ =0,  n. Tj_ laF= pj. (2.14) 

V . L . S + f = O ,  n ' S l a F = p  

are solvable only under the conditions (everywhere in this and the next two sections integration is over 
the volume F and surface OF) 

f f±aF+ ~p±dl = 0 

I x x f ± .  tdF+ }x x p j_ .tdl =0  (2.15) 

I f dF + ~ pdl = O, I (fx - S)dF + ~ pxdl = 0 
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(the last relation is an auxiliary identity). Relations (2.2) and (2.3) have the same form as (2.14); for 
them, Eqs (2.15) reduce to the following well-known equations of the balance of forces and moments 
for a rod 

Q ' + q  =0,  M ' + ~ f l t x Q + m = 0  (2.16) 

Q - S(S +ort)dF, M -= 5x x (S+ot t )dF  (2.17) 

q - S f o d F ,  m - ~ x x f v d F  

The vectors Q and M, like T, can be represented by power series in 3.. For the principal terms of 
(2.16) and (2.17), we must have Q(0)' = 0, t × Q(0) = 0 ~ Q(0) = 0 for a rod which is not straight. Then 
we can eliminate A(s)  

o = = I 

A = -SaJ  o a d F / I  °AdF (2.18) 

3. T H E  D I S P L A C E M E N T  F I E L D .  T H E  E L A S T I C I T Y  R E L A T I O N S  

We find u(R) by integrating the equation Vu s = D = 4 A.  • T. We have 

D± = (V±ui )  s, E r =v-l[tJ, -krLu t +k±  ×u± .t] 

d = Vlu  , +o -~ [ti± - ktLu ± + k,t x u± + k± x u~t] (3.1) 

(u = u± + u,t) 

The expansion for u must contain ~-2, the stresses. But the only expansion which does not involve a 
contra~liction has the form 

u = + . . . )  

In the first step we obtain 

In the second 

u ~ ) =  U ~ ) ( s ) +  Ol°)(s)t x x, u~ ° ) =  U~°)(s) 

u~ ) = U~)(s) + Octl)(s)t x x, U~o) + k± x U~  ). t = 0 

Ol °) = O, U~)  + k,t x U ~  ) + k I x U¢~°)t -- O~)(s) x t 

The last three equations merely show that 

u c°) = U(°)(s), U C°)' = O °~ x t (3.2) 

This is fully consistent with Kirchhoff's classical theory of rods in its linear form. 
The stresses appear only at the third step. Omitting the simple algebra, the final result for the elasticity 

relations of  the one-dimensional problem is 

M(x °) = a± . 0  °) '  

I a . a F "  
a ± - - - - t x J x  a a - o A  ~ o - - ~ F e a  x t  (3.3) 

M~ °) = atO (1)'. t, a t - 25gdF 

The second-rank tensor a t  is the flexural rigidity and the scalar a t is the torsional rigidity. 
Another outcome of the third step is the equation 

0 (l)" = B x t + Ct (3.4) 
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which associates the one-dimensional and two-dimensional problems. Finding B(s) and C(s) from the 
one-dimensional problem, we can determine the three-dimensional stress field from the formulae of 
Section 2. There will be a second reference to the two-dimensional solutions in the section, which are 
first needed to calculate the rigidities a±, dr. 

4. T E M P E R A T U R E  D E F O R M A T I O N S  

The splitting algorithm is easily applied to temperature deformations. Equations (2.5) are replaced 
by the relations 

D±=4A_L .. T L+AI~ ,+ot±O, d = A  2.S 

1 (4 .1)  
e t =At . . T ± + w o  t +otto 

E, 

where OL_L + attt is the tensor of the coefficients of thermal expansion and ® is the change in temperature. 
The series for the stress tensor does not need to include negative powers: T = T O) + ~.T (l) + . . .  

(if f = 0). Since (2.9) will then be replaced by 

Dx = (4 A± - EtAIA I )'" T± + EtAi(A + B. x )+  {(or± - Et(xrA t )O} (4.2) 

the three problems for TA and TBa are now joined by a fourth--for To with initial deformation in the 
form of the term in braces. 

The only change in the one-dimensional problem is the expression for the bending moment 

M(L °) = a±.  0 0)" + M e (4.3) 

= 5 X ( O e  - O A ~-°edF ]dF x t Mo 
L J o,,dl: ) 

o o  - - e , ( A , - - T o  + a,O) 

5. S O L U T I O N  OF THE O N E - D I M E N S I O N A L  P R O B L E M  

When the geometry and rigidity aa_ of the rod are arbitrary, the one-dimensional problem can only 
be solved numerically (it is obviously necessary to use a computer for the two-dimensional problems). 
But splitting led to a one-dimensional model with an inextensible axis, with computational problems 
arising if the rod was not "curved enough". We shall therefore use the following one-dimensional model 
with extension 

Q ' + q = 0 ,  M ' + t x Q + m = 0 ,  u ' - O x t = T t  (5.1) 

M = a . O ' + M o ,  Q. t= /yy ,  a - -aL+at t t  

where b > 0 is the tensile stiffness (this is a regularizing parameter whose exact value is not as important 
as the definition of a). 

Equations (5.1) with u and O given at the ends allow of a variational formulation: it is required to 
minimize the Lagrange functional 

o,-q . _ .  + (5.2) 

under the additional constraint O± = t x u'. Approximating the solution by a linear combination with 
a finite number of variable coefficients, we construct a computational algorithm of the finite-element 
method. The most effective one is with an approximation in the form of the exact solution of Eqs (5.1) 
with given values of u and O at the ends of the interval (finite element) and no distributed effects q, m 
and M0. If the effect is concentrated at nodes (element ends), we obtain the exact solution of the problem 
as a whole. 
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We will find the stiffness matrix of a finite element. We have 

From (5.4) we obtain 

Q = const, M + r x Q = Mo = const 

fll t -= h = ShM(/). M o +ShQ(I ). Q 

( u -  O× r) t ---v = ShrQ(I).Mo + S~(I). Q 

x x 

ShM(X) - Sa_ds, S h o ( X  ) -- -Sa -j × rds 
o o 

S~2(x)=- i[b- ' t t -rxa- '  xr~s 
o 

(5.3) 

(5.4) 

(5.5) 

M o = C M h ' h + C u v ' u ,  Q = C ~ t v ' h + C Q v ' V  

CQu =-(St~2(l)- ShrQ(l) • S~(I)" ShQ( l)) -I 

C M v =-" - S ~  (I). ShQ(I). CQ u (5.6) 

Cgh =--S-~c(I)'(E--ShQ(I)'CTMo ) 

Substituting M0 and Q from (5.6) into the expression for the energy of the rod 

1 ~ [M.O'+Q-(u'-Oxt)] ds--M0.h+Q.v J='2 o 

we obtain J in the form of a quadratic form of h and v. The coefficients of the stiffness matrix of an 
element can be found by changing to nodal variables u(0), 0(0), u(1), O(I). 

The contribution made by distributed loads to the right-hand side of the system of equations of the 
finite-element method is given by the linear terms in the Lagrange functional (5.2). The approximations 
u(s), O(s), O'(s) can be computed from the formulae 

u =  u(0)+ 9(0)× ( r - r (0 ) )+  (ShrQ- r x ShM).M o + ( S ~ -  r×  ShQ).O 

O = O(0) + Shs~" Mo + ShQ" Q 
O ' = a  - l .  ( M o - t  × Q) 

The vectors Mo and Q can be expressed in terms of nodal displacements and rotations as in (5.6). 

~ 
t 

n 

Fig. 1. 
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6. E X A M P L E :  A C O O L E D  S O L E N O I D  

The above algorithm for the three-dimensional problem was used to calculate the stress of a thin closed magnetic 
coil of a thermonuclear reactor. The solenoid is cooled to a superconducting state. The axis of the coil is a D- 
shaped plane curve, and the section is a trapezium (Fig. 1). The coil consists of a winding which is placed inside 
a steel band and separated from it by a thin insulating layer. The winding is made of a composite of periodic structure 
(whose properties were calculated by the averaging method [10]). 

We will first consider the one-dimensional problem (5.1) for a rod with a closed axis. We have q = 0, m = 0, so 
that Q = const, M + r × Q = M 0 = const. Integrating the elasticity relations, we obtain expressions for the 
displacement and rotation vectors. If there are no displacements, rotations, forces or moments in the uncooled 
rod, the following conditions for closure of the axis are obtained from these expressions 

~A -1 . [ m  0 - M  s - r  x Q ] d s -  0 

~{r x a-I  .[Mo - M e  - r × Q l + b - l Q . t t }  ds=O (6.1) 

In the special case considered here the rod axis is a plane curve, the rod is untwisted and its elastic properties 
and the temperature field are independent of the arc coordinate s. The tensor a q and temperature moment M0 
can be represented as follows (cf. (3.3) and (4.3)) 

a -I = Alnn + A2kk + Al2(kn + nk) + Attt 

M O = Mln + M2k 

Here A1, A2, AI2, At, ml, M2 are constants, n = el is the principal normal to the axis and k = e 2 --- n x t is the 
unit normal to the plane of the axis. In this problem the closure conditions (6.1) are satisfied by the following values 
of the force Q and moment M 

7~ io 0 -10 

6 t , MPa 
rM, MPa 

I 

'~ i ~ ~ ' 5 ~  ~ lJ _ -18 1S _ -18 I~1 

TZZ , MPa 

P / J  

~-tz 

%'k 

Fig. 2. 
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Table 1 

E1 E2 Et G12 G23 G31 
No. 109 Pa 109 Pa 109 Pa 109 Pa 109 Pa 109 Pa v~2 v23 v31 

1 208 208 208 83.9 83.9 83.9 0.24 0.24 0.24 
2 20.0 20.0 12.0 6.00 7.52 8.50 0.33 0.33 0.17 
3 86.1 81.7 124 23.3 34.0 37.1 0.20 0.17 0.26 

Q = 0 ,  M = (M2 +--~-22 Mt ]k  

The stiffnesses of the rod for the one-dimensional model are found by solving the problems on a section. These 
are then used to calculate the stress tensor over the volume of the rod from the value of the moment M. 

We considered a section consisting of three orthotropic materials where % = % = at = 1.1 x 10 -5 K -~ for the 
casing and % = % = at = 9.3 x 10 :-6 K -~ for the insulation and winding; other properties of the materials are 
given in Table 1. The dimensions of the section are of the order of one metre. The problems on the section were 
solved by the finite-element method (using eight-node quadratic isoparametric elements). We found the stiffnesses 
a (formulae (3.3)), b =- ~ FEflF, the value of the temperature moment M0 (4.3), solved the one-dimensional problem 
and calculated the constants B (3.4) andA (2.18). 

We thereby obtained the stress tensor field on section (Fig. 2). It is worth noting that when the coil is cooled all 
four non-zero components are of the same order: this is untypical of traditional models of a rod. 
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